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Application of the AWE Method with the 3-D
TVFEM to Model Spectral Responses of
Passive Microwave Components

Xiao-Ming Zhang and Jin-Fa Leé&lember, IEEE

Abstract—This paper describes an efficient algorithm to eval- frequency range, it may be necessary to solve hundreds of
uate the spectral response of passive microwave devices. Thesolutions to obtain the desired resolution in the spectrum.
method is based on the combination of the tangential-vector finite- A number of model reduction techniques have been suc-

element method (TVFEM) for modeling three-dimensional (3-D) fully d | d f imulating t ient Lo
microwave passive components and the asymptotic waveform CESSIUIlY Geveloped ior Simuiating transient reSponses in-cir=

evaluation (AWE) technique for efficiently computing the spectral  Cuit analyses [3], [4], finding poles to determine the sta-
responses. Unlike previous AWE approaches, which use direct bility condition in feedback control process [5], and fast
matrix factorization to solve for the moments, we employ a frequency-sweep techniques for EM devices modeling [6].
preconditioned conjugate gradient (PCG) method. It is observed Among them, the asymptotic waveform evaluation (AWE)

that the iterative PCG solver converges much faster by solving hod 13 iqinally d | d for timi vsis of
only the additional components of the higher moments outside Method [3] was originally developed for timing analysis o

the span of previous moments. Moreover, this paper discusses thehigh-speed circuits. Through explicit moment matching, the
effect of shifting the expansion frequency from the real frequency AWE technique approximates the transient response of a
axis to the lower half of the complex frequency plane. Through cijrcuit by reducing the problem to a low-order model. The
several numerical examples, a waveguide with an obstacle inside,poles of the reduced model are good approximations of the
mitered 90° E- and H-plane waveguide bend, microstrip low- ) . .
pass filter, and microstrip patch antenna, we show that shifting dominant poles of the original system. However, one major
reduces the pollution due to dominant resonant modes and, problem of the AWE technique is that it does not provide

consequently, results in a much wider convergence range for the an accurate approximation (even with many moments) when

moment-matching AWE technique. the expansion point is very close to a pole (resonance of
Index Terms—AWE, finite-element methods, microwave pas- transfer function). More stable model reduction approaches
sive components, numerical methods. (using variants of Krylov subspace methods) are proposed

by Gallivan [5]. Furthermore, a Lanczos algorithm with an
implicit restart process is proposed in [7], which ensures the
I. INTRODUCTION reduced model always produces a stable approximation, and a
._rational Lanczos algorithm is presented in [8], which extracts
. . SRformation from multiple points and, therefore, provides
re of great value for analysis and design purpos‘?ﬁiprovements in the rate of convergence. These methods

Among vari roaches for m ling microwav Vi . :
ong various approaches for modeling microwave de CSre usually very efficient and numerically stable. However,

the finite-element method (FEM), especially the tangential- . . : ;
vector finite-element method (TVFEM) [1], [2], has bee%r Maxwell's equations, particularly with losses presented

*h lossy dispersive materials, as well as radiation boundary

g?rg?\;s”?;sg rfsbﬁs\igﬁ/ S?:;gssstfgI'aTr:ﬁaIr\i;FiMuzir;]uI\?vti't%%nditions, one has to extend the required Krylov subspaces
man uzknowns n orc)J/er to obtain the s stgm res OnSté)sgeneral matrix polynomials. In contrast, the explicit AWE

any ' . i y POnSE always be applied to realize a Baapproximation. The

within the frequency range of interest, it is a common practice . .

X : . Técently published complex frequency hopping (CFH) [9]

to solve the system equation directly at many frequenm%s. . ST o

. .~ technique for EM application is an AWE-based multipoint

Subsequently, the results are interpolated to form a continuqus

. . . . . moment-matching method. It exploit inar rch schem
curve. However, with the increasing size of the system, solvi pme ching method. It exploited a binary search scheme

ng . . . .
: . ' . td match all dominant poles in a systematic manner. This
this system of equations at many discrete frequency points

be very time consuming. Especially when the system possestcggy algorithm has been applied to the scalar finite-element

. . - tormulation of a Helmholtz equation [10] in two dimensions.
a complex spectral behavior, with many resonances within the

0 the best of our knowledge, it has neither been applied to
three-dimensional (3-D) EM problems, nor used with vector
finite-element formulations.
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larity (pole). By using only the power series expansion fatiscrete frequencies using either a direct method or an iterative

the transfer function, this typically results in a very smalinatrix solver. As functions of frequency, x, andy can be

convergence radius. One fact exploited by the AWE methedgsembled through the FEM for each specified frequency. For

is that the solution is analytic at the expansion point, arah efficient spectral-response evaluation, we need to exgress

the partial realization, being a Radipproximation, is able andy as explicit functions of frequency. One straightforward

to approximate pole behaviors much better than the poweay is to construct them through a polynomial interpolation,

series. Nonetheless, when the expansion point is very close iea to expandA andy as

pole, the calculation of the moments will become increasingly

inaccurate. Consequently, the Radpproximation will be Alg) = zm: Aigt

polluted due to this inaccuracy of the moment computations, — '

as well as the ill-conditioned matrix that is used to compute "

the Paé coefficients. To overcome thi§ difficult_y, various y(g) = Z ui g A3)

approaches such as the multipoint approximation, CFH =0

scheme, and rational Lanczos algorithm are proposed in the

literature. They avoid extracting information from remotavhereg = 2 x (f— fo)/(fi.— fi) is the normalized frequency,

poles by catching multiple poles at multiple points. and fy is the central frequency. This normalization maps the
In this paper, we apply the standard AWE method to tHfeequency bandfi, /] onto interval[-1, +1], where fi, f

TVFEM analysis of passive microwave devices. Moreoveare the lowest and highest frequencies of interest, respectively.

we investigate the effect of choosing a complex frequency The orders of polynomials in (2) and (3) should be de-

to be the expansion center on the convergence radiustémmined by the characteristics of the real problem. In our

the AWE process. This choice is equivalent to deliberateystem, the underlying functions are nearly quadratic, so we

slowing down the convergence in the Lanczos algorithm agtioosen = m = 3. To minimize the numerical error and

subsequently reducing the pollution due to dominant modexhtain stable interpolation, we choose Chebyshev nodes as the

Through various examples, we find that the complex frequensgmpling points.

shift can significantly enlarge the convergence range and

usually provide accurate spectral responses even with a singleMoment Matching

expansion point. Additionally, in the AWE process, the most | . . . .

time-consuming part is to solve the matrix equations for L'k.e A and Y solution z is also a function of frequency

moment matching. Although a direct method is usually thaend is approximated by

preferred choice for small or modest size problems, it is not m ‘

practical for large problems. Therefore, we have employed the x(g) = Z g’ 4

preconditioned conjugate gradient (PCG) method with a sim- i=0

le projection to both speed and terminate the calculation, . . . . -
gf n?orrl1entls SP up m u I%ubstltutmg (2)—(4) into (1), and matching the coefficients

The remainder of this paper is organized as follows. ﬁ:lorresponding to the terms of the same order, we end up with

Section Il, the AWE formulation for TVFEM simulation is de-the following system of linear equations:
rived. Section Il describes the system singularity analysis and

()

its relation to convergence radius. To illustrate the efficiency Aozo =40
and accuracy of the proposed approach, Section IV presents Aoz + Ao =41
numerical results for several microwave passive components. Aozz + Azz1 + Azx0 =2
Finally, a brief conclusion is presented in Section V. Aoz + Arrs + Aszy + Azzg =13

Agzs + Arzz + Agxo + Az =0
Il. FORMULATION

A. Interpolation of System Equation Ao + Arim—1 + A2 + Az 3 =0. (5)

In the TVFEM formulation for EM boundary value prob- b tv. th . Hicients of th luti
lems, we choose a finite-dimensional vector subspace to gosequently, the power series coetlicients ot the solution, or
the moments, can be obtained recursively by

both the trial and test function space, and apply Galerkin

method to the bilinear form [1]. This process yields a matrix A-L
L 0 =4y Yo
equation of the form 0
z1 =4y (y1 — A1)
Az =y (1) zy = Ayt (y2 — Arwy — Agwmo)
where A is a complex symmetric matrix; is a vector whose w3 = Ay (ys — Arwg — Agwy — Agy)
entries represent the solution of unknown field, apds T4 :Agl(—Ala:g—AQa:Q — Aszxy)

an excitation vectorA, z, and y are implicit functions of
frequency, and have dimension aof > 1. Equation (1)
is typically solved for the unknown vectar at a set of Tm =A51(—A1xm_1 — AoTm—2 — A3Tim—3). (6)
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In modeling passive microwave components, we are usuadlgnt new information is to be acquired, and to speed up the
most interested in th&-parameters. In the TVFEM formula- convergence in the iterative solver for higher moments.

tion, for example, the5;; can be obtained by Solving the projection ofdgz, ", = .41 on the current

m moment space (by Galerkin’s method withd', =7, ... 21"
Si(g)y=oy" -z = Z $ig’ (7) as the testing space) results in

=0

where superscrip stands for Hermitian, and; is the sth Z vi(a:ona:i) = xfynﬂ, j=0---n. (10)

moment of S;;. The number of moments: is adaptively i=0

determined by the convergence behavior of the expansion, and

ultimately depends on the complexity of the system. Once the projection:;l; is obtained, we can easily check

the significance of the: + 1 moment by comparingjv; 7, ||
C. Pads Approximation 0 flynsill, where g%, = yni1 — AozyYf). Furthermore,

. ) the correction ofn + 1 moment satisfiesioz;, ; = 4,51,
It is known that the power series of (4) or (7) always ha\';/\'/hereazgﬂ = @41 — %% It will be shown later through

unfortunately, a f|n|te rad_|us (_)f convergence in th_e Presenggrious numerical examples that this projection process signif-
of poles. The Pa&l approximation is able to approximate the?

. X i . Tcantly reduces the number of iterations for computing higher
function beyond the convergent region of its power series,  onts.
After obtaining (7), we will force it to agree with a Pad
approximate ofS;;. The idea of Pagl approximation is to
replace the polynomial with a rational polynomial, which is [ll. POLES AND FREQUENCY SHIFT
good at catching poles. The process is letting

P ' A. Convergence Radius
.t
m Z €9 The moment matching performed in (4) and (7), corresponds
> sig’ = # (8) to a power series expansion of (1) abgut 0.0, i.e.,
=0 14+ di.g"
1
; z(g) (9)- (11)

T Ao+ Arg + Arg® + Azg®’
wherep + ¢ = m. A different combination ofp and ¢ will

produce the PdHl table, and we always choogse= p or For a nonsingulard,, we can always approximate [around
g = p+ 1. This Pa@ approximation is a partial realizationgo = (0,0)] this rational polynomial by a polynomial. That
of the original system. The details of computing the ®ads the basis for moment matching performed above. The

coefficients can be found in [6]. convergence radius of this power series is closely related to
the singularities of the underlying system. More specifically,
D. Linear Dependence of Moments and Accelerating this power series is convergent only in its analytic domain

. . with a radius equal to the distance frogg to the nearest
In the moment calculation process when the expansion poin . oo ;
. . ole. Although Padapproximation is known to be appropriate
is very close to a pole, the higher moments are usually close . . ) : :
. ; : 0 approximate a function outside the analytic domain of the
to linearly dependent. This can be understood easily from . . . .
. . power series, its accuracy depends on the information from
(6). Since the moments are computed recursively through an . : . . .
- i the power series (i.e., the moments) and is ultimately limited
inverse-power”-like method, the dominant mode of the sys- : o : . . A
. . the singularities. An analysis of these singularities will give
tem will eventually overshadow the other remote eigenvectors. = =~ .= S i
: ) S ore insight into the approximations and shed light on a better
From then on, we will not be able to acquire any significan ; :
. : o ; Xpansion point.
new information from moments. This is the main drawbac Since theS-parameters act as the transfer functions of the
of the explicit moment-matching AWE method, and is alsg P

L , . System, our focus is (8). A pole is a root of the denominator
the reason why multipoint Pédform, rational Lanczos, and ) . .
of the transfer function, i.e., a frequency at whidh+

CFH are needed. Nonetheless, by checking the degree Oflm%%él deg® = 0. We can also see that the poles are the

dependence among cur_rent mpments, we can deterrnlne.fr.equencies that make the matti(g) singular. Fig. 1 shows
convergence of the dominant eigenvectors. Another beneﬂt”l]se pole locations in the normalized frequency plane for a

that the projection of new right-hand side on the moment SPACe . <trip patch antenna problem. We show onlv the poles
is a very good initial guess for the PCG solver. PP P ' y b

Let PP — 3 4.z, which is the projection of the + 1 inside the unit_circle. Thgre are five poles for this probl_em,
momenTtLJE)lnto thggpazmzc,)f previous moments aqd . - -, and Fhe|r. Iocatloqs are I|st§d in Table 1. We know that |f_a
are previously computed moments. We then writ’e " function is anglyuq at a point in Fhe com_pl_e>.< plane, thenllts

' Taylor expansion is convergent in the vicinity of that point
aop with the convergence radius being the distance to the nearest
Aoz = Z ViAo ©) singularity. An important observation is that all the poles are
=0 in the upper half frequency plane. That is always true for a
By projecting to previous moments, we are able to determipassive system, and will be the basis for choosing a better
when to terminate the moment calculation—when no signiféxpansion point.

n
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final approximation. The convergence of the AWE can be

\ 1 | X L .
| | | determined through monitoring the linear dependence among
om0 b o . L the matched moments. The scheme is as follows. From (10),
’ : ; : Ps we have an approximation of the next moment, ;, i.e.,
— P1 | P2 231 Pe °
Q 0.00 .____Q....J_.Q__*_.AL.‘_‘SA_-;L WWWWWW n
E A B ! ! app __
r ! | | xn+1 == Z Vi Tg.
[ ! ! ! i=0
os0 - R R —
; : } We check how close this guess is to the final solution by
1.00 | L I evaluating
1.0 -0.8 0.0 0.5 1.0
PP
Relg) _ l¥n+1 — Aoz, 1|

Fig. 1. Pole locations of a patch antenna problem. There are five poles in

the unit circle.

(12)
gl

and, ife < g9, whereegg is the resolution specified for PCG,

TABLE | then the process should stop immediately. The moments have
Pole #1__|(-0.676, 0.048) become almost linearly dependent and a new moment can
Pole #2 |(-0.364, 0.078) . . . .
Pole #3 |(:0.082. 0.104) add little new information. In the following examples, we
Pole#4 _1(0.236, 0.094) choosesy = 1078, On the other hand, when there is no pole
Pole #5 [(0.696, 0.130) L . . .
located within the unit circle, the magnitude of the moments
TABLE II will decrease monotonically, and the process can terminate
—r e — — when the new moment is only a small fraction of the first
—Pam ] Radus  |NearestPole| Realfxs | . Range moment, say, 10'~10 2. Thus, the number of moments can
0.0,00) 0.13 013__ | (013, +013] | 2.0GHz be adaptively determined by the complexity of the underlying
0.0, -0.5) 0.61 0.61 [-0.35, +0.35] 5.6GHz

system.

B. Frequency Shift IV. NUMERICAL RESULTS

We have seen that poles play a critical role in determining e have applied the algorithm described above to several
the valid region of moment matching. By choosing a bettgfactical problems to demonstrate its ability to evaluate the
expansion frequency, we can enlarge the convergence radiggctral responses in the desired frequency band. In all exam-
sign_ificantly. For example, in Fig. 1, a Taylor expansion_ Eﬁ|es, we set, = 10-%, and for cases when there is no pole
position B(—0.514, 0.0) has a much larger convergence radiUgithin the unit circle, the process will be terminated when
than that at pointd(—0.676,0.0). However, even assuming|;; ..1/|lzo|| < 5 x 10~2. For all the examples shown in this
that we know the exact pole locatiorss priori, it is still section, we have used the proposed procedure expanding at
impossible to enlarge the convergence region much furtheraifsing|e frequency point. As can be seen from the results,
the expanding point is confined to the real axis. However, if Wy some cases, we still have noticeable errors at the two
pick the expansion point from the entire complex frequenghgs of the spectrum. This suggests that for reliable and
plane, we are able to keep these poles relatively far awg¥cyrate spectral responses, the proposed approach needs to

from the expansion point, and that means a larger convergeRge compined with CFH-like techniques to cover wide-band
radius. For instance, we can perform the expansion at (Ofperations.

—0.5) instead of (0.0, 0.0). This selection does not assume
knowledge of exact pole locations, and what it is based upgn
is just the fact that poles for a passive system can only appear
in the upper half-plane. This shift provides the avenue for We first consider a rectangular waveguide with a dielectric
matching more poles at a single point. The comparison of tREstacle inserted inside. The geometry of the example is shown
results is shown in Table II. in Fig. 2. This is a simple example since there is no pole
From Table II, we see that by shifting the expanding poif@cated inside the unit circle. The process stops at 20 moments
from (0.0, 0.0) to (0.0+-0.5), the valid region of the momentsWith [|z20]|/||zo]| = 4.2 x 10~2. The matrix dimension for the
has been enlarged significantly. Through shifting the expansiimulation is 33720, and, is shown in Fig. 3.
point to a position relatively far away from any poles, we have
slowed down the convergence rate of the dominant modes aBd,Mitered Bend
therefore, make_: it possiple to extract_more _information from 5 mitered 90 E- and H-plane waveguide bend is shown
moment matching at a single expansion point. in Fig. 4. The matrix dimension is 25428, and the reflection
. coefficient is shown in Fig. 5. This is also a simple problem
C. An Adaptive Scheme since there is no pole within the unit circle. We simply
In the implementation of the AWE algorithm, we need tehoose the center frequency as the expansion point without
adaptively determine the number of moments used for they shifting. The number of moments and iterations are

Dielectric Waveguide with Obstacle Inside



ZHANG AND LEE: APPLICATION OF AWE METHOD WITH 3-D TVFEM

1739

I 0.0 T T T T T T
I
I -100 | 1
| a L
! 200 P 1
. K R RTRT 5
P A S - . -30.0 - | % R X
Ryd I 0.399a ZS % \)§ /X/% 5 g
s L L 08a = 400 - Nt 1
S i
. S ® 500 -
e .- % 0.8a
o - €, / 600 - — — - Reiter's results [12] E
- — AWE:g0=(0.0, 0.0), m=27
. 0.8a
-70.0 x Direct computation b
l l -80.0 L 1 L : Ly L 1 |
0.556a 0.888a 8.2 8.7 9.2 9.7 102 107 112 117 122
2a Freq.(GHz)

Fig. 2.

a = 1.0 m ande, = 6.0 are used in the numerical analysis.
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Fig. 3. The 511

from the current approach compared with the fi-

Physical geometry of a waveguide with dielectric obstacle insidEid- 5. TheS1;-parameter from the current approach. Results from literature
and direct calculation are also shown.

10

15
Moment Number

20

30

nite-difference time-domain’s (FDTD) result and that from direct computatio&ig 6. Moment convergence via number of moments. The process stops at
28 moments.

I 2.71
'y
2.38
22,27 =
~§
=
— &
238 % v =38 =
Adr ‘E
— -
| ]
12.29
= 5.67
! —~———
a 254
Fig. 4. The geometry of the mitered berd= 22.86 mm,b = 10.16 mm,
1 = b, dopy = 0.976a, bop, = 0.874b. |
S =
- = .

shown in Fig. 6. The process terminates at 27 moments Wi__t

B. 7. The physical geometry of a microstrip low-pass filter with= 2.2.

|z27]|/l|woll = 4.9 x 1072, Top view dimensions in millimeters.

C. Microstrip Low-Pass Filter radius of 0.26 if the expansion point is shifted to (0.0,
Another example that we considered here is a microstrip0.5) and then convergence radius becomes 0.68. On the
low-pass filter with its geometry, shown in Fig. 7. The systemeal frequency axis, this corresponds to a convergent interval
has pole(s) in the unit circle since the moments have (&0.46,+0.46). The matrix dimension is 29592 and thg
convergence radius smaller than one. If expansion is performmatameters produced by these two expansions are shown in
at go = (0.0,0.0), the power series will have a convergenc€ig. 8, with the PCG performances for solving the moments
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Fig. 8. S;. of this low-pass filter for expansions at origin and a shift point. L e e e e L-1_J

The former terminates at 14 moments, while the shift case goes to 39 moments. ) . . .
Fig. 10. Top and side views of a microstrip patch antenna.
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300 o} e—~ego=:o.o,»o.5)) ]
2 250 / -10.0
2 ; o
s °
2 200 | =~ -20.0
= s
o [72]
2z 150 |
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s0 | x Direct computation
-50.0 ! L
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o 5 10 i5 20 28 30 as 40
Moment Number FreQ-(G“z)
Fig. 9. Convergence behaviors of shift and unshift cases. Fig. 11. Sy from two expansions, compared with the FDTD’s result and
direct computation.
shown in Fig. 9. As can be seen from the figure, the number w06
of iterations decreases significantly for higher moments. .o
Although the expansion at (0.0, 0.0) can nearly give the
. 250 5B g0=(0.0, 0.0) 7]
correct results, an expansion at (0-).5) can do even better. . . oo go=(00,-0.5)

For the (0.0, 0.0) case, the expansion stopped at 14. The 200
expansion at (0.0-0.5) converges at a slower rate, and the
process continues untih = 39. Thus, by shifting from (0.0,
0.0) to (0.0,—0.5), we have slowed down the convergence
of the dominant eigenvectors and, subsequently, extract more 1°°
information from a single-point moment matching.

150

No. of lterations

50

D. Microstrip Patch Antenna

. . . . 0 E‘» 1‘0 1‘5 2‘0 2‘5 3‘0 as 40
The last example considered here is a microstrip patch Moment Number

antenna (see Fig. 10). The matrix dimension of the FEMg 12 convergence of moment matching fos = (0.0,0.0) and

formulation is 33758 with 641K total nonzero entries. The = (0,0,-0.5).

poles have been shown in Fig. 1, and the convergence behavior

has been analyzed in Section Ill. The reflection coefﬁme%loy _0.5). This time, the process goes to 38 moments, and

shown in Fig. 11 forgy is chosen to be (0.0, 0.0) and (0.0 ives better results for the entire frequency band

—0.5) and is compared with FDTD results. The number gf' d Y '

total moments and the iteration number for the PCG solver

for each moment are shown in Fig. 12.

For the g0 = (0.0,0.0) case, the dominant eigenvectors The application of the AWE method to TVFEM simulation
converge too fast, and after 12 moments, there is virtually b microwave devices has been presented in this paper. The
new information contained in the subsequent moments. Cammmbination of a PCG iterative solver and the frequency
sequently, the approximation cannot get enough informationghift yields a very efficient AWE-based fast frequency-sweep
estimate the solution beyond the 8.0- and 17.5-GHz intervédchnique. Since the iterative method was employed to match
A better result was obtained by shifting the expansion point tnoments, the size of the problem could be large. Also, due

V. CONCLUSIONS
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