
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 11, NOVEMBER 1998 1735

Application of the AWE Method with the 3-D
TVFEM to Model Spectral Responses of

Passive Microwave Components
Xiao-Ming Zhang and Jin-Fa Lee,Member, IEEE

Abstract—This paper describes an efficient algorithm to eval-
uate the spectral response of passive microwave devices. The
method is based on the combination of the tangential-vector finite-
element method (TVFEM) for modeling three-dimensional (3-D)
microwave passive components and the asymptotic waveform
evaluation (AWE) technique for efficiently computing the spectral
responses. Unlike previous AWE approaches, which use direct
matrix factorization to solve for the moments, we employ a
preconditioned conjugate gradient (PCG) method. It is observed
that the iterative PCG solver converges much faster by solving
only the additional components of the higher moments outside
the span of previous moments. Moreover, this paper discusses the
effect of shifting the expansion frequency from the real frequency
axis to the lower half of the complex frequency plane. Through
several numerical examples, a waveguide with an obstacle inside,
mitered 90� E- and H-plane waveguide bend, microstrip low-
pass filter, and microstrip patch antenna, we show that shifting
reduces the pollution due to dominant resonant modes and,
consequently, results in a much wider convergence range for the
moment-matching AWE technique.

Index Terms—AWE, finite-element methods, microwave pas-
sive components, numerical methods.

I. INTRODUCTION

SPECTRAL responses of electromagnetic (EM) devices
are of great value for analysis and design purposes.

Among various approaches for modeling microwave devices,
the finite-element method (FEM), especially the tangential-
vector finite-element method (TVFEM) [1], [2], has been
demonstrated to be very successful. The TVFEM formulation
of EM problems usually leads to a matrix equation with
many unknowns. In order to obtain the system responses
within the frequency range of interest, it is a common practice
to solve the system equation directly at many frequencies.
Subsequently, the results are interpolated to form a continuous
curve. However, with the increasing size of the system, solving
this system of equations at many discrete frequency points can
be very time consuming. Especially when the system possesses
a complex spectral behavior, with many resonances within the

Manuscript received May 26, 1997; revised May 17, 1998. This work was
supported by Ansoft Corporation.

The authors are with the Electrical and Computer Engineering Department,
Worcester Polytechnic Institute, Worcester, MA 01609 USA.

Publisher Item Identifier S 0018-9480(98)08214-3.

frequency range, it may be necessary to solve hundreds of
solutions to obtain the desired resolution in the spectrum.

A number of model reduction techniques have been suc-
cessfully developed for simulating transient responses in cir-
cuit analyses [3], [4], finding poles to determine the sta-
bility condition in feedback control process [5], and fast
frequency-sweep techniques for EM devices modeling [6].
Among them, the asymptotic waveform evaluation (AWE)
method [3] was originally developed for timing analysis of
high-speed circuits. Through explicit moment matching, the
AWE technique approximates the transient response of a
circuit by reducing the problem to a low-order model. The
poles of the reduced model are good approximations of the
dominant poles of the original system. However, one major
problem of the AWE technique is that it does not provide
an accurate approximation (even with many moments) when
the expansion point is very close to a pole (resonance of
transfer function). More stable model reduction approaches
(using variants of Krylov subspace methods) are proposed
by Gallivan [5]. Furthermore, a Lanczos algorithm with an
implicit restart process is proposed in [7], which ensures the
reduced model always produces a stable approximation, and a
rational Lanczos algorithm is presented in [8], which extracts
information from multiple points and, therefore, provides
improvements in the rate of convergence. These methods
are usually very efficient and numerically stable. However,
for Maxwell’s equations, particularly with losses presented
by lossy dispersive materials, as well as radiation boundary
conditions, one has to extend the required Krylov subspaces
to general matrix polynomials. In contrast, the explicit AWE
can always be applied to realize a Padé approximation. The
recently published complex frequency hopping (CFH) [9]
technique for EM application is an AWE-based multipoint
moment-matching method. It exploited a binary search scheme
to match all dominant poles in a systematic manner. This
CFH algorithm has been applied to the scalar finite-element
formulation of a Helmholtz equation [10] in two dimensions.
To the best of our knowledge, it has neither been applied to
three-dimensional (3-D) EM problems, nor used with vector
finite-element formulations.

Moreover, the conventional AWE method chooses the ex-
pansion point on the real frequency axis. It is known that
the convergence radius of a Taylor expansion is equal to
the distance from the expansion point to the nearest singu-
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larity (pole). By using only the power series expansion for
the transfer function, this typically results in a very small
convergence radius. One fact exploited by the AWE method
is that the solution is analytic at the expansion point, and
the partial realization, being a Pad´e approximation, is able
to approximate pole behaviors much better than the power
series. Nonetheless, when the expansion point is very close to a
pole, the calculation of the moments will become increasingly
inaccurate. Consequently, the Pad´e approximation will be
polluted due to this inaccuracy of the moment computations,
as well as the ill-conditioned matrix that is used to compute
the Pad́e coefficients. To overcome this difficulty, various
approaches such as the multipoint Pad´e approximation, CFH
scheme, and rational Lanczos algorithm are proposed in the
literature. They avoid extracting information from remote
poles by catching multiple poles at multiple points.

In this paper, we apply the standard AWE method to the
TVFEM analysis of passive microwave devices. Moreover,
we investigate the effect of choosing a complex frequency
to be the expansion center on the convergence radius in
the AWE process. This choice is equivalent to deliberately
slowing down the convergence in the Lanczos algorithm and
subsequently reducing the pollution due to dominant modes.
Through various examples, we find that the complex frequency
shift can significantly enlarge the convergence range and
usually provide accurate spectral responses even with a single
expansion point. Additionally, in the AWE process, the most
time-consuming part is to solve the matrix equations for
moment matching. Although a direct method is usually the
preferred choice for small or modest size problems, it is not
practical for large problems. Therefore, we have employed the
preconditioned conjugate gradient (PCG) method with a sim-
ple projection to both speed up and terminate the calculation
of moments.

The remainder of this paper is organized as follows. In
Section II, the AWE formulation for TVFEM simulation is de-
rived. Section III describes the system singularity analysis and
its relation to convergence radius. To illustrate the efficiency
and accuracy of the proposed approach, Section IV presents
numerical results for several microwave passive components.
Finally, a brief conclusion is presented in Section V.

II. FORMULATION

A. Interpolation of System Equation

In the TVFEM formulation for EM boundary value prob-
lems, we choose a finite-dimensional vector subspace to be
both the trial and test function space, and apply Galerkin’s
method to the bilinear form [1]. This process yields a matrix
equation of the form

(1)

where is a complex symmetric matrix, is a vector whose
entries represent the solution of unknown field, andis
an excitation vector. , , and are implicit functions of
frequency, and have dimension of . Equation (1)
is typically solved for the unknown vector at a set of

discrete frequencies using either a direct method or an iterative
matrix solver. As functions of frequency,, , and can be
assembled through the FEM for each specified frequency. For
an efficient spectral-response evaluation, we need to express
and as explicit functions of frequency. One straightforward
way is to construct them through a polynomial interpolation,
i.e., to expand and as

(2)

(3)

where is the normalized frequency,
and is the central frequency. This normalization maps the
frequency band onto interval , where ,
are the lowest and highest frequencies of interest, respectively.

The orders of polynomials in (2) and (3) should be de-
termined by the characteristics of the real problem. In our
system, the underlying functions are nearly quadratic, so we
choose . To minimize the numerical error and
obtain stable interpolation, we choose Chebyshev nodes as the
sampling points.

B. Moment Matching

Like and , solution is also a function of frequency
and is approximated by

(4)

Substituting (2)–(4) into (1), and matching the coefficients
corresponding to the terms of the same order, we end up with
the following system of linear equations:

...

(5)

Subsequently, the power series coefficients of the solution, or
the moments, can be obtained recursively by

...

(6)
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In modeling passive microwave components, we are usually
most interested in the-parameters. In the TVFEM formula-
tion, for example, the can be obtained by

(7)

where superscript stands for Hermitian, and is the th
moment of . The number of moments is adaptively
determined by the convergence behavior of the expansion, and
ultimately depends on the complexity of the system.

C. Padé Approximation

It is known that the power series of (4) or (7) always has,
unfortunately, a finite radius of convergence in the presence
of poles. The Pad́e approximation is able to approximate the
function beyond the convergent region of its power series.
After obtaining (7), we will force it to agree with a Padé
approximate of . The idea of Pad́e approximation is to
replace the polynomial with a rational polynomial, which is
good at catching poles. The process is letting

(8)

where . A different combination of and will
produce the Pad́e table, and we always choose or

. This Pad́e approximation is a partial realization
of the original system. The details of computing the Padé
coefficients can be found in [6].

D. Linear Dependence of Moments and Accelerating

In the moment calculation process when the expansion point
is very close to a pole, the higher moments are usually close
to linearly dependent. This can be understood easily from
(6). Since the moments are computed recursively through an
“inverse-power”-like method, the dominant mode of the sys-
tem will eventually overshadow the other remote eigenvectors.
From then on, we will not be able to acquire any significant
new information from moments. This is the main drawback
of the explicit moment-matching AWE method, and is also
the reason why multipoint Padé form, rational Lanczos, and
CFH are needed. Nonetheless, by checking the degree of linear
dependence among current moments, we can determine the
convergence of the dominant eigenvectors. Another benefit is
that the projection of new right-hand side on the moment space
is a very good initial guess for the PCG solver.

Let , which is the projection of the
moment onto the span of previous moments and
are previously computed moments. We then write

(9)

By projecting to previous moments, we are able to determine
when to terminate the moment calculation—when no signifi-

cant new information is to be acquired, and to speed up the
convergence in the iterative solver for higher moments.

Solving the projection of on the current
moment space (by Galerkin’s method with
as the testing space) results in

(10)

Once the projection is obtained, we can easily check
the significance of the moment by comparing
to , where . Furthermore,
the correction of moment satisfies ,
where . It will be shown later through
various numerical examples that this projection process signif-
icantly reduces the number of iterations for computing higher
moments.

III. POLES AND FREQUENCY SHIFT

A. Convergence Radius

The moment matching performed in (4) and (7), corresponds
to a power series expansion of (1) about , i.e.,

(11)

For a nonsingular , we can always approximate [around
] this rational polynomial by a polynomial. That

is the basis for moment matching performed above. The
convergence radius of this power series is closely related to
the singularities of the underlying system. More specifically,
this power series is convergent only in its analytic domain
with a radius equal to the distance from to the nearest
pole. Although Pad´e approximation is known to be appropriate
to approximate a function outside the analytic domain of the
power series, its accuracy depends on the information from
the power series (i.e., the moments) and is ultimately limited
by the singularities. An analysis of these singularities will give
more insight into the approximations and shed light on a better
expansion point.

Since the -parameters act as the transfer functions of the
system, our focus is (8). A pole is a root of the denominator
of the transfer function, i.e., a frequency at which

. We can also see that the poles are the
frequencies that make the matrix singular. Fig. 1 shows
the pole locations in the normalized frequency plane for a
microstrip patch antenna problem. We show only the poles
inside the unit circle. There are five poles for this problem,
and their locations are listed in Table I. We know that if a
function is analytic at a point in the complex plane, then its
Taylor expansion is convergent in the vicinity of that point
with the convergence radius being the distance to the nearest
singularity. An important observation is that all the poles are
in the upper half frequency plane. That is always true for a
passive system, and will be the basis for choosing a better
expansion point.
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Fig. 1. Pole locations of a patch antenna problem. There are five poles in
the unit circle.

TABLE I

TABLE II

B. Frequency Shift

We have seen that poles play a critical role in determining
the valid region of moment matching. By choosing a better
expansion frequency, we can enlarge the convergence radius
significantly. For example, in Fig. 1, a Taylor expansion at
position has a much larger convergence radius
than that at point . However, even assuming
that we know the exact pole locationsa priori, it is still
impossible to enlarge the convergence region much further if
the expanding point is confined to the real axis. However, if we
pick the expansion point from the entire complex frequency
plane, we are able to keep these poles relatively far away
from the expansion point, and that means a larger convergence
radius. For instance, we can perform the expansion at (0.0,

0.5) instead of (0.0, 0.0). This selection does not assume
knowledge of exact pole locations, and what it is based upon
is just the fact that poles for a passive system can only appear
in the upper half-plane. This shift provides the avenue for
matching more poles at a single point. The comparison of the
results is shown in Table II.

From Table II, we see that by shifting the expanding point
from (0.0, 0.0) to (0.0, 0.5), the valid region of the moments
has been enlarged significantly. Through shifting the expansion
point to a position relatively far away from any poles, we have
slowed down the convergence rate of the dominant modes and,
therefore, make it possible to extract more information from
moment matching at a single expansion point.

C. An Adaptive Scheme

In the implementation of the AWE algorithm, we need to
adaptively determine the number of moments used for the

final approximation. The convergence of the AWE can be
determined through monitoring the linear dependence among
the matched moments. The scheme is as follows. From (10),
we have an approximation of the next moment , i.e.,

We check how close this guess is to the final solution by
evaluating

(12)

and, if , where is the resolution specified for PCG,
then the process should stop immediately. The moments have
become almost linearly dependent and a new moment can
add little new information. In the following examples, we
choose . On the other hand, when there is no pole
located within the unit circle, the magnitude of the moments
will decrease monotonically, and the process can terminate
when the new moment is only a small fraction of the first
moment, say, 10 –10 . Thus, the number of moments can
be adaptively determined by the complexity of the underlying
system.

IV. NUMERICAL RESULTS

We have applied the algorithm described above to several
practical problems to demonstrate its ability to evaluate the
spectral responses in the desired frequency band. In all exam-
ples, we set , and for cases when there is no pole
within the unit circle, the process will be terminated when

. For all the examples shown in this
section, we have used the proposed procedure expanding at
a single frequency point. As can be seen from the results,
for some cases, we still have noticeable errors at the two
ends of the spectrum. This suggests that for reliable and
accurate spectral responses, the proposed approach needs to
be combined with CFH-like techniques to cover wide-band
operations.

A. Dielectric Waveguide with Obstacle Inside

We first consider a rectangular waveguide with a dielectric
obstacle inserted inside. The geometry of the example is shown
in Fig. 2. This is a simple example since there is no pole
located inside the unit circle. The process stops at 20 moments
with . The matrix dimension for the
formulation is 33 720, and is shown in Fig. 3.

B. Mitered Bend

A mitered 90 - and -plane waveguide bend is shown
in Fig. 4. The matrix dimension is 25 428, and the reflection
coefficient is shown in Fig. 5. This is also a simple problem
since there is no pole within the unit circle. We simply
choose the center frequency as the expansion point without
any shifting. The number of moments and iterations are
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Fig. 2. Physical geometry of a waveguide with dielectric obstacle inside.
a = 1:0 m and"r = 6:0 are used in the numerical analysis.

Fig. 3. The S11 from the current approach compared with the fi-
nite-difference time-domain’s (FDTD) result and that from direct computation.

Fig. 4. The geometry of the mitered bend.a = 22:86 mm, b = 10:16 mm,
1 = b, aopt = 0:976a, bopt = 0:874b.

shown in Fig. 6. The process terminates at 27 moments with
.

C. Microstrip Low-Pass Filter

Another example that we considered here is a microstrip
low-pass filter with its geometry, shown in Fig. 7. The system
has pole(s) in the unit circle since the moments have a
convergence radius smaller than one. If expansion is performed
at , the power series will have a convergence

Fig. 5. TheS11-parameter from the current approach. Results from literature
and direct calculation are also shown.

Fig. 6. Moment convergence via number of moments. The process stops at
28 moments.

Fig. 7. The physical geometry of a microstrip low-pass filter with"r = 2:2.
Top view dimensions in millimeters.

radius of 0.26 if the expansion point is shifted to (0.0,
0.5) and then convergence radius becomes 0.68. On the

real frequency axis, this corresponds to a convergent interval
( 0.46, 0.46). The matrix dimension is 29 592 and the
parameters produced by these two expansions are shown in
Fig. 8, with the PCG performances for solving the moments
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Fig. 8. S11 of this low-pass filter for expansions at origin and a shift point.
The former terminates at 14 moments, while the shift case goes to 39 moments.

Fig. 9. Convergence behaviors of shift and unshift cases.

shown in Fig. 9. As can be seen from the figure, the number
of iterations decreases significantly for higher moments.

Although the expansion at (0.0, 0.0) can nearly give the
correct results, an expansion at (0.0,0.5) can do even better.
For the (0.0, 0.0) case, the expansion stopped at . The
expansion at (0.0, 0.5) converges at a slower rate, and the
process continues until . Thus, by shifting from (0.0,
0.0) to (0.0, 0.5), we have slowed down the convergence
of the dominant eigenvectors and, subsequently, extract more
information from a single-point moment matching.

D. Microstrip Patch Antenna

The last example considered here is a microstrip patch
antenna (see Fig. 10). The matrix dimension of the FEM
formulation is 33 758 with 641K total nonzero entries. The
poles have been shown in Fig. 1, and the convergence behavior
has been analyzed in Section III. The reflection coefficient
shown in Fig. 11 for is chosen to be (0.0, 0.0) and (0.0,

0.5) and is compared with FDTD results. The number of
total moments and the iteration number for the PCG solver
for each moment are shown in Fig. 12.

For the case, the dominant eigenvectors
converge too fast, and after 12 moments, there is virtually no
new information contained in the subsequent moments. Con-
sequently, the approximation cannot get enough information to
estimate the solution beyond the 8.0- and 17.5-GHz interval.
A better result was obtained by shifting the expansion point to

Fig. 10. Top and side views of a microstrip patch antenna.

Fig. 11. S11 from two expansions, compared with the FDTD’s result and
direct computation.

Fig. 12. Convergence of moment matching forg0 = (0:0; 0:0) and
g0 = (0;0;�0:5).

(0.0, 0.5). This time, the process goes to 38 moments, and
gives better results for the entire frequency band.

V. CONCLUSIONS

The application of the AWE method to TVFEM simulation
of microwave devices has been presented in this paper. The
combination of a PCG iterative solver and the frequency
shift yields a very efficient AWE-based fast frequency-sweep
technique. Since the iterative method was employed to match
moments, the size of the problem could be large. Also, due
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to the iterative solver, the algorithm is ready to incorporate a
frequency-hopping technique.
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